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Eigenvectors and Eigenvalues Cheat Sheet

𝐻𝑢 = 𝜆𝑢

𝑢

We can create a linear combination of {𝑢, �⃗�, 𝑤} by 
multiplying them by scalars 𝛼, 𝛽, and 𝛾 and adding 
them together:

𝑢!
𝑢"
⋮
𝑢#

𝑣!
𝑣"
⋮
𝑣#

𝑤!
𝑤"
⋮
𝑤#

𝛼
𝛽
𝛾

= 𝛼

𝑢!
𝑢"
⋮
𝑢#

+ 𝛽

𝑣!
𝑣"
⋮
𝑣#

+ 𝛾

𝑤!
𝑤"
⋮
𝑤#

= 𝑢 �⃗� 𝑤
𝛼
𝛽
𝛾

= 𝛼𝑢 + 𝛽�⃗� + 𝛾𝑤

�⃗� =

𝑣!
𝑣"
⋮
𝑣#

𝑢 =

𝑢!
𝑢"
⋮
𝑢#

𝑤 =

𝑤!
𝑤"
⋮
𝑤#

where 𝛼, 𝛽, and 𝛾 must NOT all be zero (also 
called the “trivial” solution)
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= 𝛼𝑢 + 𝛽�⃗� + 𝛾𝑤 = 0

{𝑢, �⃗�, 𝑤} is linearly dependent iff:A set of vectors is
linearly dependent if 
one vector is equal to a 
linear combination of 
the other vectors

Let’s start by defining 3 vectors of 
length/dimension n: 𝑢, �⃗�, and 𝑤:

We call this collection of vectors 𝑢, �⃗�, and
𝑤 a set of vectors, denoted as {𝑢, �⃗�, 𝑤}
A set of vectors is also called a vector space

𝛾𝑤

𝛼𝑢

𝛽�⃗� All sets of orthogonal vectors are linearly 
independent

0 , 1 are eigenvectors of 𝜎$
→ are an orthonormal eigenbasis

of 𝜎$

If a set of vectors is not linearly dependent, it is 
linearly independent  

The vector space that 
includes all real 
vectors of dimension 
n=2 is called ℝ" and 
can be plotted on a 
2D grid

The vector space 
that includes all real 
vectors of dimension 
n=3 is called ℝ% and 
can be plotted on a 
3D grid

If we take {𝑢, �⃗�, 𝑤} for n=3, we 
get a set in ℝ%:
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Eigenvalues and eigenvectors are 
sets of scalars (values) and vectors 
characteristic to a particular 
matrix and which satisfy: 

𝐻𝑢 = 𝜆𝑢
Where H is a matrix, 𝜆 is a scalar, and 
𝑢 is a vector

An eigenvector 𝑢 does NOT
change direction when
multiplied by its matrix H,	
but	it	is	scaled	by	a	factor	𝜆

The 0 and 1 quantum states we have been
discussing all semester are eigenvectors of our
quantum system’s Hamiltonian matrix (!!!)

If	multiple eigenvectors correspond
to	a	single	eigenvalue,	the	
eigenvectors	are	linearly	dependent

Eigenvectors and eigenvalues are 
defined relative to a particular 
matrix
i.e. an eigenvector for one matrix 
may not be an eigenvector for a 
different matrix

If you can create all vectors in a 
vector space V	 using a linear 
combination of {𝑢, �⃗�, 𝑤} :
V	 is spanned by {𝑢, �⃗�, 𝑤}
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→ is a basis

If {𝑢, �⃗�, 𝑤} is linearly independent 
and spans vector space V	: 
{𝑢, �⃗�, 𝑤} a basis of V

𝑤!

𝑤"

𝑢! = 𝑢"

𝑣! = 𝑣"

𝐻Ψ = 𝐸Ψ

The time-independent Schrodinger equation is 
the same as the eigenvalue/eigenvector 
equation:

→ the energies of these quantum states are 
equal to their eigenvalues Modified from Krantz et. al., Appl. Phys. Rev., 2019. 

0 , 1 are eigenvectors of both H
and 𝜎$
Their eigenvalues correspond to the 
qubit energy levels

This is why we measure in the Z-basis 
(also called the energy basis)
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This vector space is a 
subspace of  ℝ%

You can see there are more (actually 
an infinite number of) eigenvalues 
of higher energy, but we only care 
about the subspace spanned by 
0 , 1 , which we call the 

computational subspace
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A vector space of dimension n can have exactly n 
linearly independent vectors in a set

A single qubit can be 
described by a vector space 
in ℂ𝟐 where ℂ" contains all 
2-dimensional complex 
vectors
ℂ" is a Hilbert space

We can represent ℂ" with 
two 2D graphs – one 
showing the real part of the 
vectors and one showing the 
imaginary part of the vectors

A Hilbert space is a type of vector space that has 
special properties that make it easy to define 
lengths and angles of its vectors (the inner product) 
and to perform calculus

All finite-dimensional (𝑛 ≠ ∞) vector spaces that 
have a meaningful inner product are Hilbert spaces

Infinite-dimensional vector spaces have an 
additional constraint that they are “complete” –
meaning (informally) that there are no gaps in the 
set of possible inner products 

All vector spaces that can be mapped onto 
ℝ# (including ℂ#) are Hilbert spaces 

You can always assume you are in a Hilbert space in 
this course.

If �⃗�, 𝑧 ∈ 𝑉, then V is NOT a Hilbert space

If a vector space is completely contained in 
another vector space, we call it a subspace

{𝑢, �⃗�} is a subspace of {𝑢, �⃗�, 𝑤}

Mathematically: {𝑢, �⃗�} ⊂ {𝑢, �⃗�, 𝑤}

If we take {𝑢, �⃗�, 𝑤} for n=2, we 
get a set in ℝ":
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This vector space is a subspace of 
ℝ" and a subspace of  ℝ%
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𝜓'( , 𝜓') , 
𝜓*( , 𝜓*) ,
𝜓$( , 𝜓$) :
• are orthogonal and thus 

linearly independent
• span ℂ"
• are normalized

+ , − are eigenvectors of 𝜎'
→ are an orthonormal eigenbasis

of 𝜎'

Quantum superpositions are the same as linear 
combinations of the qubit energy states / basis

𝜓 = 0 , 1
𝛼
𝛽 = 𝛼 0 + 𝛽 1

We can create another qubit basis with equal 
superpositions of the energy states:
+ = !" 0 + !

" 1 , − = !" 0 − !
" 1

An	eigenbasis is	a	basis	that	is	made	
up	of	eigenvectors	of	a	matrix
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