

© 2020 The Coding School All rights reserved

Use of this recording is for personal use only. Copying, reproducing, distributing, posting or sharing this recording in any manner with any third party are prohibited under the terms of this registration. All rights not specifically licensed under the registration are reserved.

© 2020 The Coding School All rights reserved

INTRO TO QUANTUM COMPUTING WEEK #2

QUANTUM COMPUTING in abstract

AMIR KARAMLOU (@karamlouMIT)

10/25/2020

Classical Computing Recap

© 2020 The Coding

TOPICS COVERED

Classical Computing

- Binary Representation
- Bits
- Boolean Logic
- Universality
- Reversibility

BINARY

© 2020 The Coding

- While it's common to use base-10 for counting, there is no mathematical reason to prefer one base over another.
- **Base-2** is one of the most important bases for performing computation
- Base-2 is binary, meaning there are only two possible digits (0 and 1)
 - Also referred to as a **bit (binary digit)**
- We can describe any number with a combination of bits
- All of the operations in a classical computer happen by manipulating bits

LOGIC GATES

• Logic gates: Maps input bit(s) to output bit(s)

Gate	Symbol	Operator
and	=	А·В
or		A + B
not		Ā
nand		A·B
nor	\rightarrow	A + B
xor		A⊕B

Input A	Input B	Output
0	0	0
1	0	1
0	1	1
1	1	1

UNIVERSALITY

Any computation operation can be made by using a combination of: {NOT, AND, OR, FANOUT}

REVERSIBILITY

Given the output of a gate, we can determine what the inputs are.

- **Reversible gate:** preserves all the information
- Non-reversible gate: loses some information

LECTURE OBJECTIVES

Why are we learning about *classical computing* when this course is about *quantum computing*?

- Qubits
- Quantum superposition
- Quantum gates
- Quantum entanglement

QUANTUM RESOURCES for COMPUTING

[QU]BIT OF QUANTUM HISTORY

Quantum bits: Qubits

How quantum computers compute

Bit to Qubit

| is a ket and it indicates that we're talking about a quantum state. example: QxQ \mapsto | QxQ \rangle

Quantum Superposition

Quantum object can be in two states at once!

Superposition

Superposition: a qubit can be |0⟩ and |1⟩ at the same time!

This is how we show it: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

measurement: collapses the quantum state of the qubit $|\psi\rangle$

to either $|0\rangle$ or $|1\rangle$

Measurement

Qubit: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

measurement: collapses the quantum state of the qubit $|\psi\rangle$ to either $|0\rangle$ or $|1\rangle$

probability of measuring $|0\rangle$: $|\alpha|^2$

probability of measuring $|1\rangle$: $|\beta|^2$

example

50-50 superposition of 0 and 1: $|\psi\rangle = \sqrt{0.5}|0\rangle + \sqrt{0.5}|1\rangle$

90-10 superposition of 0 and 1: $|\psi\rangle = \sqrt{0.9} |0\rangle + \sqrt{0.1} |1\rangle$

practice

QUANTUM GATES

Quantum GATES: single-qubit

- X-gate
- Z-gate
- Hadamard gate

Quantum GATES: X-gate

X (or σ^{x}): bit-flip

Quantum GATES: Z-gate

Z (or σ^z): phase gate

Quantum GATES: Hadamard

Hadamard (H): creates a 50-50 superposition

from $|0\rangle$ and $|1\rangle$

Quantum GATES applied to superposition

Quantum gates apply to each state of the superposition

- separately
- in parallel

$$X | \psi \rangle = X (\alpha | 0 \rangle + \beta | 1 \rangle)$$
$$= \alpha (X | 0 \rangle) + \beta (X | 1 \rangle)$$
$$= \alpha | 1 \rangle + \beta | 0 \rangle$$

practice

Quantum GATES applied to superposition

What is the difference between a coin flip and quantum superposition?

Coin flip:

Quantum GATES applied to superposition

What is the difference between a coin flip and quantum superposition?

Superposition:

Quantum Interference

Result of two classical coin flips: 50% 0, 50% 1 Result of two hadamard gates on $|0\rangle$: 100% $|0\rangle$

The states involved in quantum superposition can cancel or amplify

Why are quantum computers faster

# of qubits	# of superposition states
1	2 (0>, 1>)
2	4 (00>, 01>, 10>, 11>)
3	8 (000>, 001>, 010>, 011>, 100>, 101>, 110>, 111>)
4	16

n qubits $\rightarrow 2^n$ superposition states

Each operation acts on all the elements of the superposition!

Quantum Supremacy

A programmable quantum device can solve a problem that no classical computer can solve in any feasible amount of time

 $|11\rangle$ or $|1\rangle$ $|1\rangle$: qubit A is $|1\rangle$ and qubit B is $|1\rangle$

 $|10\rangle$ or $|1\rangle|0\rangle$: qubit A is $|1\rangle$ and qubit B is $|0\rangle$

 $|01\rangle$ or $|0\rangle$ $|1\rangle$: qubit A is $|0\rangle$ and qubit B is $|1\rangle$

 $|00\rangle$ or $|0\rangle|0\rangle$: qubit A is $|0\rangle$ and qubit B is $|0\rangle$

qubit A qubit B —

Two qubits Let's say we have two qubits: qubit A and qubit B

Quantum GATES: two-qubit

• CNOT gate

Quantum GATES: CNOT

CNOT (controlled not):

if the control qubit is 0, does nothing if the control qubit is 1, flip the target qubit

Quantum Entanglement

Quantum correlation between two qubits where the state of one qubit depends on the other qubit

Entanglement

Entangled state: $|\psi\rangle = \sqrt{0.5}|00\rangle + \sqrt{0.5}|11\rangle$

if we measure $|\psi\rangle$:

- we get |00> with 50% probability
- we get |11> with 50% probability

Entanglement

Entangled state: $|\psi\rangle = \sqrt{0.5}|00\rangle + \sqrt{0.5}|11\rangle$

what if we measure only measure qubit A?

- If qubit A is $0 \rightarrow$ the quantum state of qubit B is immediately set to $|0\rangle$
- If qubit A is $1 \rightarrow$ the quantum state of qubit B is immediately set to $|1\rangle$

Applications of Entanglement

- Quantum Teleportation
- Quantum Cryptography
- Superdense Coding
- Quantum speedups

Quantum teleportation

Transferring information or matter from one point to another without

physically moving things!

How to create entanglement?

THIS WEEK

Lab:

• In your lab section this week, you will cover: Math review

Homework:

- Will be available on Discord in #course-announcements
- Math review
- You will submit your homework for weeks 1 and 2 this week. Homework is due October 31st at 11:59pm EST
- Updates will be announced on Discord!!!

Important Notes:

- You will be sent an email with your Canvas login information.
- NO MORE LAB CHANGES WILL BE PERMITTED!!!
- DO NOT SEND INDIVIDUAL MESSAGES UNLESS INSTRUCTED TO DO SO
- Today at 6pm EST is the last chance to get verified on Discord

FOLLOW US!

@thecodingschool

@the_coding_school

@the-coding-school

@qubitbyqubit

#QubitbyQubit

© 2020 The Coding School All rights reserved

END OF LECTURE 2

Use of this recording is for personal use only. Copying, reproducing, distributing, posting or sharing this recording in any manner with any third party are prohibited under the terms of this registration. All rights not specifically licensed under the registration are reserved.