
Qiskit Cheat Sheet
We’re using Qiskit as a Python library in order to simulate and run quantum circuits. From their website:

“Qiskit [kiss-kit] is an open source software development kit (SDK) for working with quantum computers
at the level of pulses, circuits and application modules.”

Circuits

Visualize the circuit

qc = QuantumCircuit(qb, cb)

qc - the name of the variable the circuit is stored in
qb - the number of quantum bits (qubits) in the circuit
cb - the number of classical bits; usually the same as
 the number of qubits, or 0 if using the
 statevector_simulator

Imports
Import things you’ll need for creating and running circuits, and visualizing results:

from qiskit import QuantumCircuit, execute, Aer
from qiskit.visualization import plot_histogram

Add gates

qc.x(qb)
qc.cx(ctrl, target)

qb - the index of the qubit to apply the X gate to
ctrl, target - the indices of the qubits to apply the

CNOT gate to

Remember, the qubits are indexed starting from zero

Create a circuit with

qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0,1], [1,0])
qc.draw()

Running the circuit

Common simulators:
- “qasm_simulator”: ideal and noisy multi-shot
execution of circuits; returns counts or memory.
- “statevector_simulator”: returns the statevector
after applying the circuit

Recall, this circuit
puts the qubits in the
|𝜙+〉Bell state

Measure qubits

qc.measure(qbits, cbits)

qbits is a list of the indices of the qubits to measure
cbits is a list of the indices of the classical lines which
receive the measurements
They should be the same length; see the next panel for an
example
This isn’t necessary if using statevector_simulator

In measure, the
result of measuring
the 0th qubit is going
to the 1st classical bit
(and the 1st qubit to
the 0th classical bit)

Choose a backend

backend = Aer.get_backend(simulator)

job = execute(qc, backend, shots=num_shots)
result = job.result()

(shots only for qasm_
simulator)

state = result.get_statevector(qc)
print(state) # Display the statevector

Run the job

Get the statevector from statevector_simulator

One way to visualize results

counts = result.get_counts(qc)
plot_histogram(counts)

This works for both simulators mentioned earlier

Running it on a real quantum computer

from qiskit import IBMQ
from qiskit.providers.ibmq import least_busy
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
backend = least_busy(provider.backends(filters=
 lambda x: x.configuration().n_qubits >= 2
 and not x.configuration().simulator
 and x.status().operational==True))
job = execute(qc, backend, shots=num_shots)
job.status() # check the status, it can take a while

Note: In this guide, anything in
this blue color is a variable
name and can be changed to
whatever you want, as long as
it’s consistent throughout your
code

© 2021 The Coding School

