Qiskit Cheat Sheet

We’re using Qiskit as a Python library in order to simulate and run quantum circuits. From their website:
“Qiskit [kiss-kit] is an open source software development kit (SDK) for working with quantum computers
at the level of pulses, circuits and application modules.”

Imports

Import things you’ll need for creating and running circuits, and visualizing results: Note: In this guide, anything in
this blue color is a variable
name and can be changed to
whatever you want, as long as
it’s consistent throughout your

from qiskit impoxt QuantumCircuit, execute, Aer
from giskit.visualization import plot_histogram

. . code
Circuits
T Add gates
Create a circuit with
. . gc.x(gbh)
qc = QuantumCircuit(qb, cb) gc.cx(ctrl, target)

gc - the name of the variable the circuit is stored in

gb - the number of quantum bits (qubits) in the circuit

cb - the number of classical bits; usually the same as
the number of qubits, or O if using the
statevector_simulator

gb - theindex of the qubit to apply the X gate to
ctrl, target - theindices of the qubits to apply the
CNOT gate to

Remember, the qubits are indexed starting from zero

Measure qubits Visualize the circuit
qc.measure(gbits, chits) gc = QuantumCircuit(2, 2) Inmeasure, the
qc.h(0) result of measuring
the 0™ qubit is goin
gbitsis alist of the indices of the qubits to measure qoeE, 1) St 8018
hite ie a list of the indi f the classical li hich qc.measure([0,1], [1,0]) to the 1% classical bit
cbits |sha ist of the indices of the classical lines whic qc . draw() (and the 1%t qubit to
receive the measurements the 0t classical bit)
They should be the same length; see the next panel for an J,
example
This isn’t necessary if using statevector_simulator = . | a Recall, this circuit
o | — puts the qubits in the
" . L, |¢p*)Bell state
C

Running the circuit

Choose a backend One way to visualize results

backend = Aer.get_backend(simulator) counts = result.get_counts(qc)

plot_histogram(counts)

{

Probabilities

Common simulators:
- “gasm_simulator”: ideal and noisy multi-shot This works for both simulators mentioned earlier °®
execution of circuits; returns counts or memory.

- “statevector_simulator”: returns the statevector

after applying the circuit Running it on a real quantum computer
. (shots only for gasm_
Run the job simulator) from qiskit impoxrt IBMQ
) from giskit.providers.ibmq impoxt least_busy
job = execute(qc, backend, shots=num_shots) IBMQ.load_account()
result = job.result() provider = IBMQ.get_provider(hub="ibm-q')

backend = least_busy(provider.backends(filters=
lambda x: x.configuration().n_qubits >= 2
Get the statevector from statevector_simulator and not x.configuration().simulator
and x.status().operational==True))
job = execute(qc, backend, shots=num_shots)

state = result.get_statevector(qc) J
job.status() # check the status, it can take a while

print(state) # Display the statevector

UBIT © 2021 The Coding School

X QUBIT

