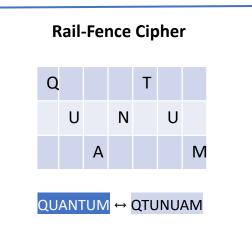

Quantum Key Distribution Cheat Sheet

Cryptography uses a **cipher** (also called a cypher or a **code**) which is a type of algorithm that allows two parties to communicate in a way that eavesdroppers cannot understand

A key is a parameter that defines the output of a cipher algorithm

QUANTUM <mark>↔</mark>NRXKQRJ


Called a substitution cipher because you replace the letters with other letters

The key for this right shift substitution cipher would be 3 (corresponding to the number of places we shift the letters by)

These ciphers are easy to encode and decode by hand, but that also makes them easy to crack

- Max 25 tries for Caesar cipher (assuming latin alphabet)
- Max N/2-1 tries (loose bound) for rail-fence cipher

Substitution and transposition are the two main operations used in many **ciphers** today – but they are combined to be much more complex

Called a transposition cipher because you *rearrange* the letters

The **key** for this rail fence transposition cipher would be 3 (corresponding to the "height" of the rail fence)

We assume the **cipher** is **public**ly known but the **key** is secret

The process of converting the secret message into a code is called encryption

The process of converting the code back to the secret message is called **decryption**

Modern ciphers are built to have no possible algorithmic speedups

- You can only crack them by **brute force** testing keys • • This is the same as searching an unstructured list – classically O(N)
- Standard keys are 128 bits $\rightarrow N = 2^{128} \approx 10^{34}$
 - Assuming 1.5ps gate time, it would take $\sim 10^{19}$ years to crack • The universe is only $\sim 10^{10}$ years old -- uncrackable
- Grover's algorithm can give us quadratic speedup: 128 bits $\rightarrow 2^{64} \approx 10^{19}$
- With same assumptions, could crack a 128-bit key in ~1 year!!
- **Solution**: double key length to 256 bits and we're back to $\sim 10^{19}$ years to crack

Bob

Hello

Alice

Alice

Alice

Alice

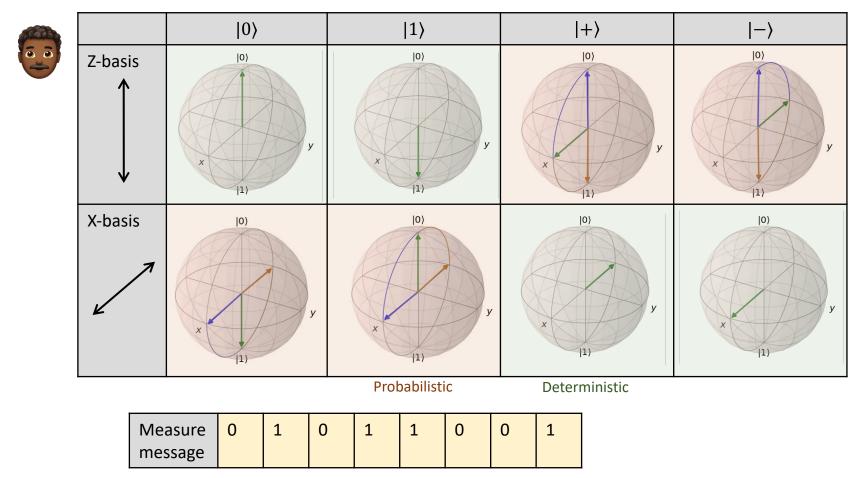
private key

6EB6957

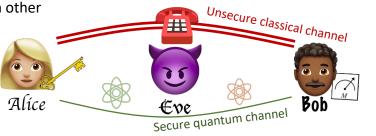
08E03CE4

Decryp

-key_cryptography


https://en.wikipedia.org/wiki/Public

public key


Types of modern cryptography

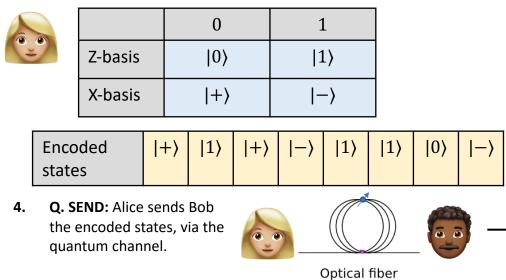
- Private (or symmetric) key
- Uses a cipher
 - Requires secure key distribution which is very hard to do
 - QKD solves key distribution problem! • Much faster than asymmetric key cryptography
- Public (or asymmetric) key •
 - Uses mathematically related public/private key pairs (not a cipher) Alice Your **private key** is kept **secret** and used to **decrypt** messages intended for you
 - Your **public key** is sent out so that others can **encrypt** messages for you
 - Does not require secure key distribution
 - Susceptible to algorithmic speedups
 - Quantum-insecure: Shor's algorithm breaks all of the most widelyused public key encryption algorithms (RSA, elliptic curve)

Q. MEASURE: Bob measures all the quantum states in his pre-selected measurement bases. 5.

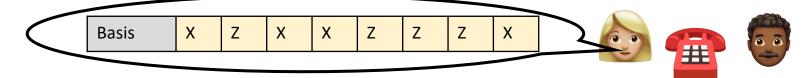
Alice and Bob want to create a secret key so that they share secret messages with each other

- They don't want Eve (man-in-the-middle) to overhear their messages
- They can use the Quantum Key Distribution (QKD) protocol BB84 to achieve a verifiably secure key distribution

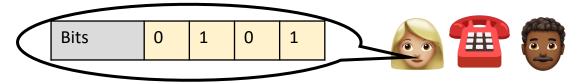
BB84


SELECT ENCODING: Alice randomly selects a basis (Z or X) to encode 1. each bit

Message	0	1	0	1	1	1	0	1
Encoding basis	Х	Z	Х	Х	Z	Z	Z	х


SELECT MEASUREMENT: Bob randomly selects a basis (Z or X) to measure 2. each bit.

Measure basis	Z	Z	х	Z	х	х	Z	х
------------------	---	---	---	---	---	---	---	---


3. Q. ENCODE: Alice creates the quantum states, encoded in the elected bases.

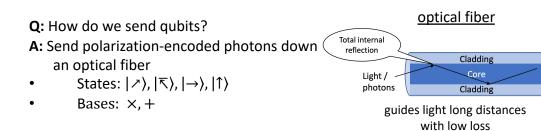
C. ANNOUNCE BASIS: Alice announces which basis she used to encode each bit via the classical channel 6.

C. REVEAL SOME BITS: Alice reveals some of the bits she sent 7.

ANALYSIS: Bob performs analysis to determine if the message was intercepted by Eve. 8.

accession of the second	A basis	Х	Z	Х	Х	Z	Z	Z	х	Part A: Check which bits were measured correctly		
	B basis	Z	Z	Х	Z	Х	X	Z	Х	measured correctly		
	Match?	No	Yes	Yes	No	No	No	Yes	Yes			
	Bit #	0	1	2	3	4	5	6	7	Part B: Compare Bob's measurement with Alice's		
	Bob bits	?	1	0	?	?	? (0 1	1	reported bits		
	Alice bits	0	1	0	1							
If Alice and Bob's bits match	Match?	?	Yes	Yes	? <u>It's a match!</u> So our key is <u>secure</u>							
	Bit indices	6	7	>		1	#		•	Part C : If it's a match, Bob sends the indices of our matched bases to Alice		
	Кеу	0	1		t D: Alio ched ir		Bob boʻ	th cons	truct th	eir secret key using the bits at the		
	This key is a symmetric key, and Alice and Bob will use the same key for both encryption and decryption											
If Alice and Bob's do not match	bits Gram			The c	Juantur	n chan	nel has	been b	reache			

Q: How secure is QKD?


- A: As secure as it is unlikely Eve chooses the correct basis every time
- There are two possible measurement bases, so Eve has a 50% chance of choosing the correct one for each bit
- If we check N bits, we have a $P(NOT \ detect) = 0.5^N$
- Q: How many bits do we need to check to have less than one in a million chance of NOT detecting eve?

A: 20 bits

- $P(NOT \ detect) = 10^{-6} = 0.5^{N}$
- $\rightarrow N = \frac{6(\log(2) + \log(5))}{2}$ log(2)

Q: But how do we actually **encrypt** our data? We just have a key but no cipher? A: Any symmetric key cipher, examples:

- Advanced encryption standard (AES)
- ChaCha20

© 2020 The Coding School

