Superdense Coding Quantum Teleportation

Step 1: Create and split an entangled bell state

Step 2: Travel far away

 $\sqrt{2}$

(11)	$h_{-} - 1$		
(11)	$v_2 - 1$		
		I VZ	

 $|00\rangle + |11\rangle$

Step 4: Alice (physically) sends her qubit to Bob over a quantum channel

Step 5: Bob decodes the qubits using a bell measurement to retrieve Alice's classical message

Х $\alpha |0\rangle + \beta |1\rangle$ $\alpha |0\rangle + \beta |1\rangle$ Ζ $\alpha |0\rangle + \beta |1\rangle$ Ζ Х

Bob's operations

© 2020 The Coding School

Step 4: Alice (physically) sends the measurement results to Bob over a

 $\alpha |0\rangle + \beta |1\rangle$

11

 $\alpha |1\rangle - \beta |0\rangle$

Bob's Final State

 $\alpha |0\rangle + \beta |1\rangle$

