

INTRO TO QUANTUM COMPUTING

LECTURE #R1

ALICE IN SINELAND: TRIG REVIEW

Corbin and Rahul

10/17/2020

TOPICS COVERED

"Trigonometry" is the worst name in mathematics

- What are sin, cos, and tan?
- Radians and degrees
- Special Angles
- Useful trig identities
- sineland 1: coordinate-systems

polar

spherical

• sineland 2: waves

OBJECTIVES

- Feel comfortable with trigonometrical functions.
- Be able to use identities to simplify/covert expressions.
- Be familiar with all parts of sineland discussed here.
- Have fun!

What are sin, cos, and tan?

© 2020 The Coding School

UNIT CIRCLE

Unit Circle Definition:

- 1. It is a circle...
- 2. ...centered at the origin...
- 3. ...with radius 1.

Equation of a circle:

).))

X

PRACTICE

y

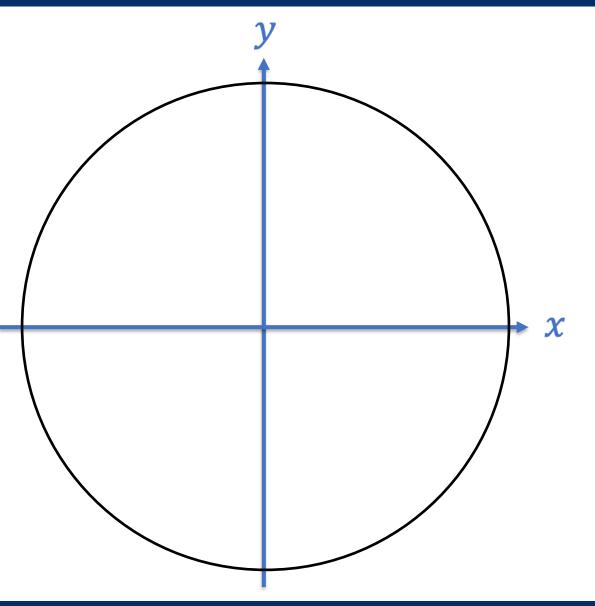
The point $P = \left(\frac{3}{5}, b\right)$ lies on the unit circle. Solve for *b*.

Equation of a circle:

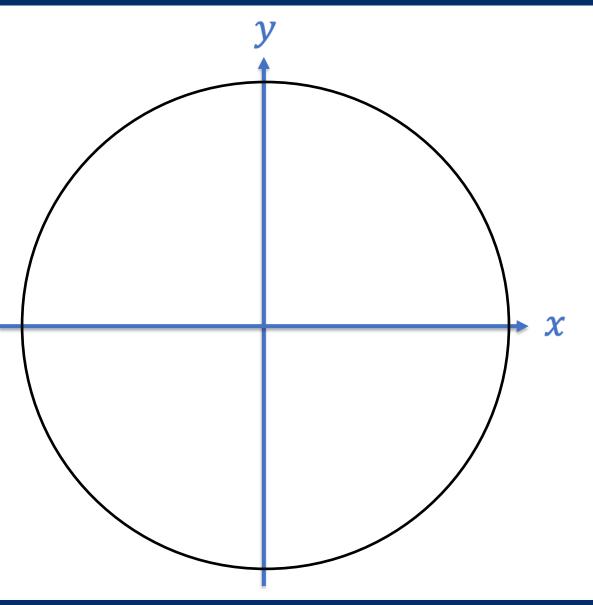
).))

X

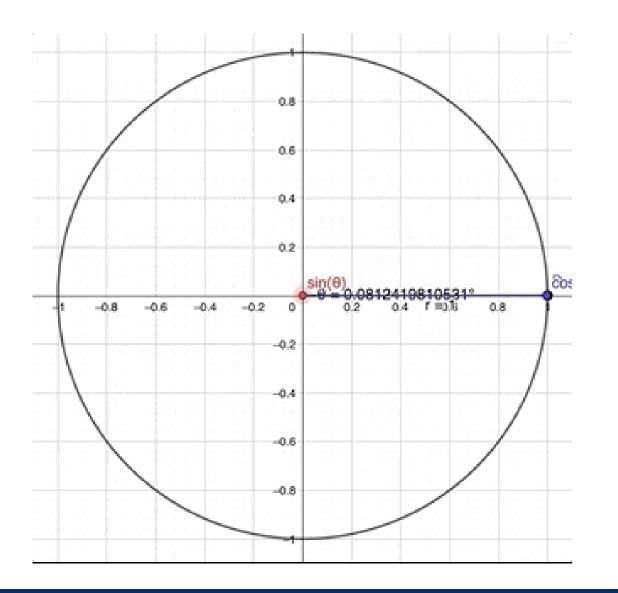
SINE AND COSINE

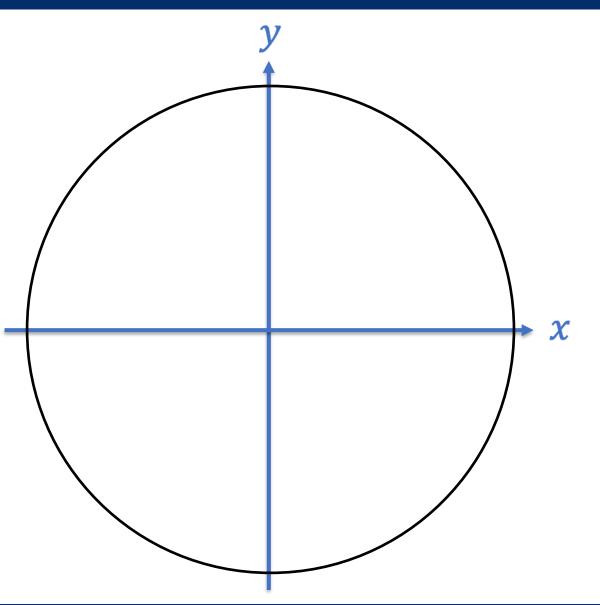


TAN AND INVERSE TAN



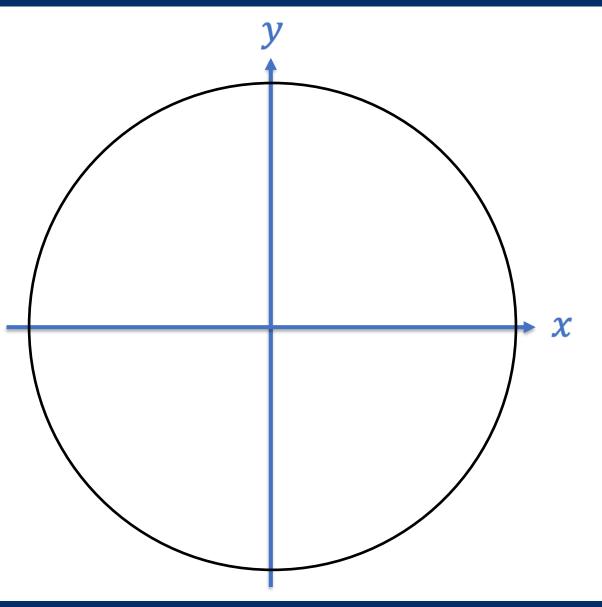
REVIEW





The Coding School/>

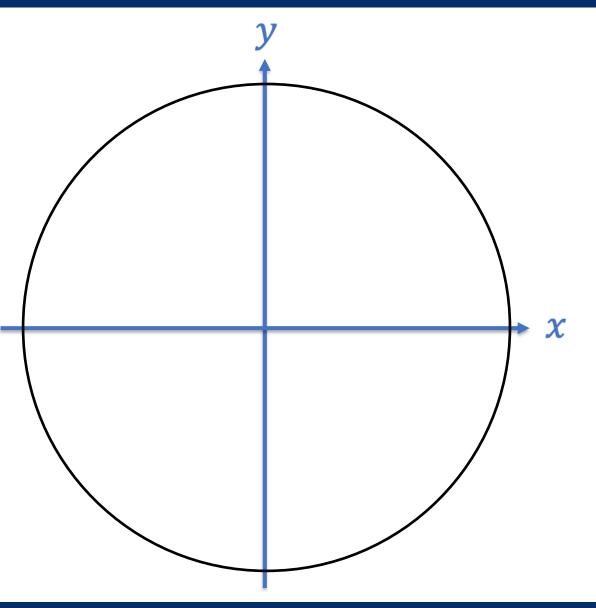
QUESTIONS?



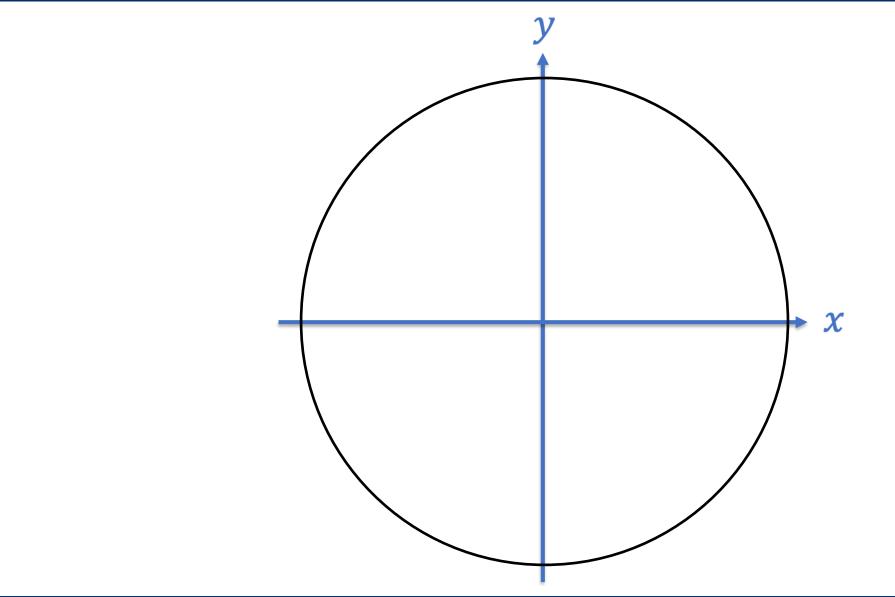
Degrees and radians

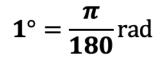
© 2020 The Coding School

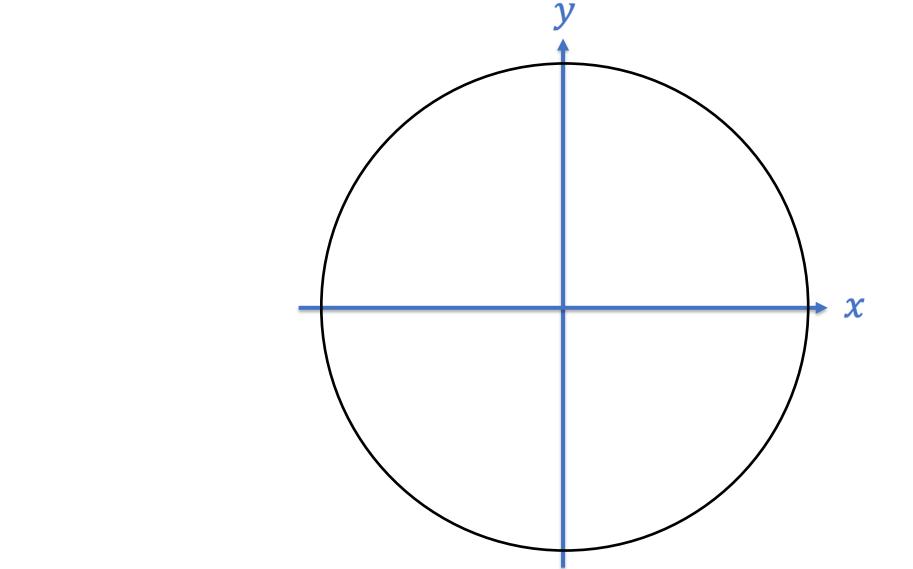
WHAT ARE RADIANS?



WHY RADIANS?



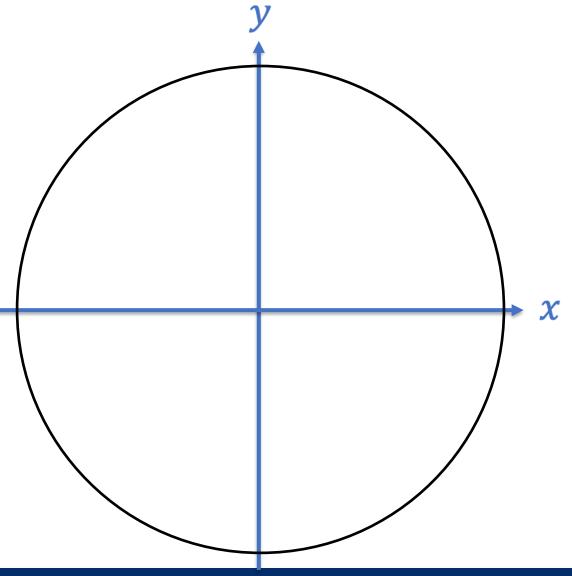




Coding School/>

$$1^\circ = \frac{\pi}{180}$$
 rad

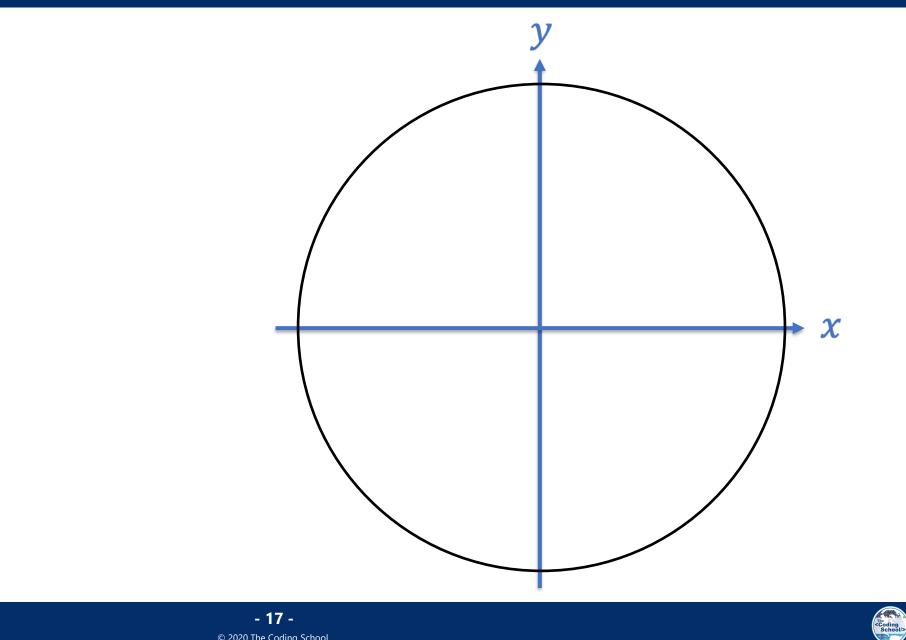
QUESTIONS?

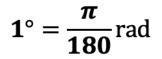


Special angles

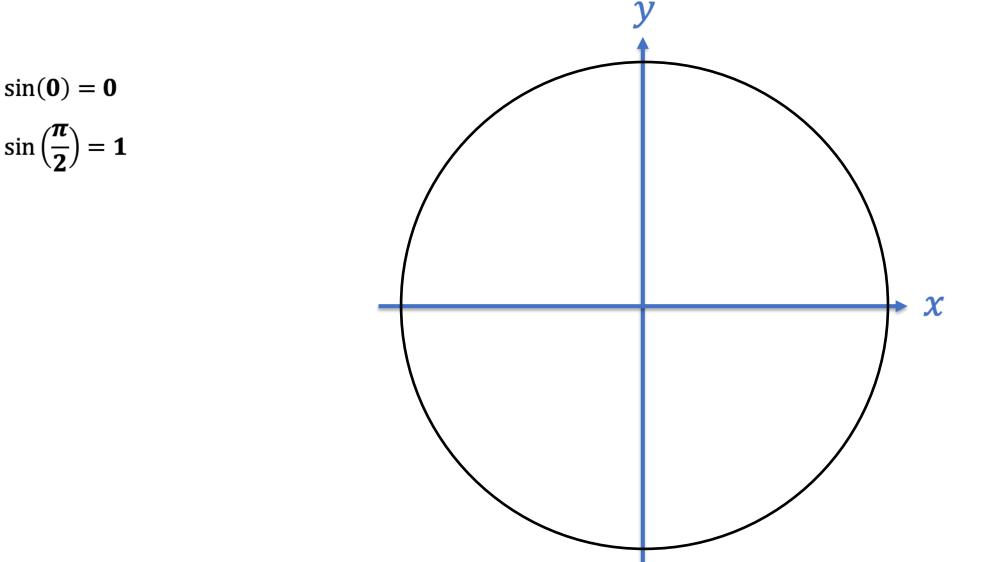
© 2020 The Coding School

SPECIAL ANGLES





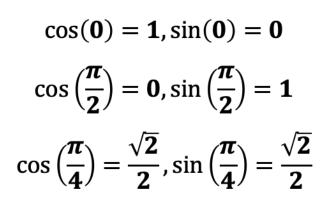
SPECIAL ANGLES

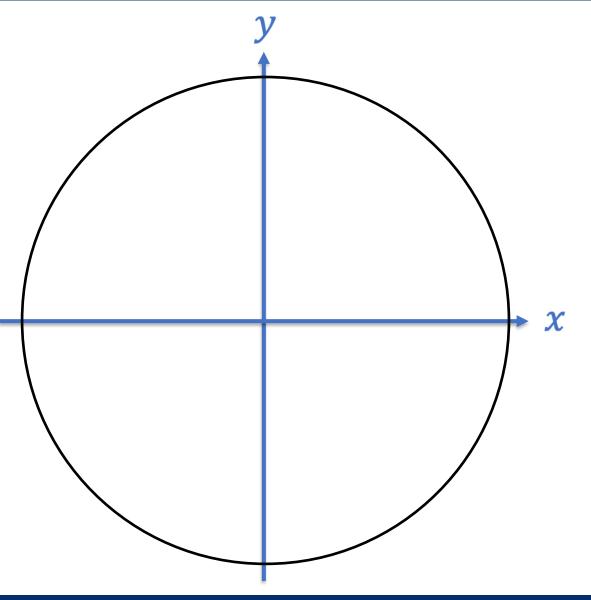


Coding School/

$$\cos(\mathbf{0}) = \mathbf{1}, \sin(\mathbf{0}) = \mathbf{0}$$
$$\cos\left(\frac{\pi}{2}\right) = \mathbf{0}, \sin\left(\frac{\pi}{2}\right) = \mathbf{1}$$

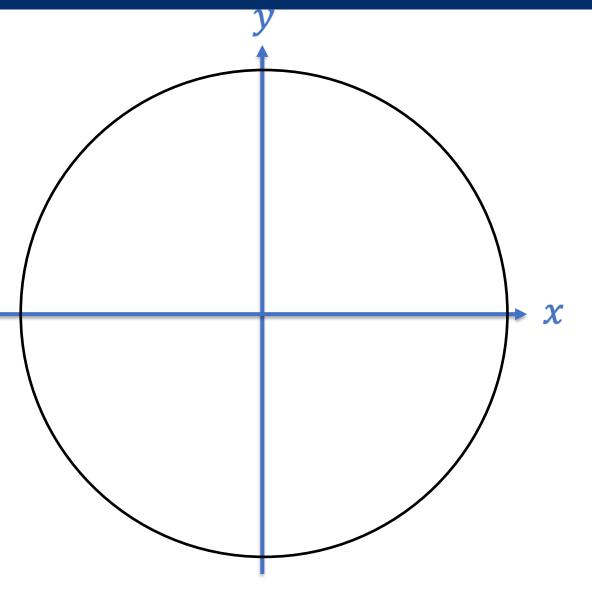
Review





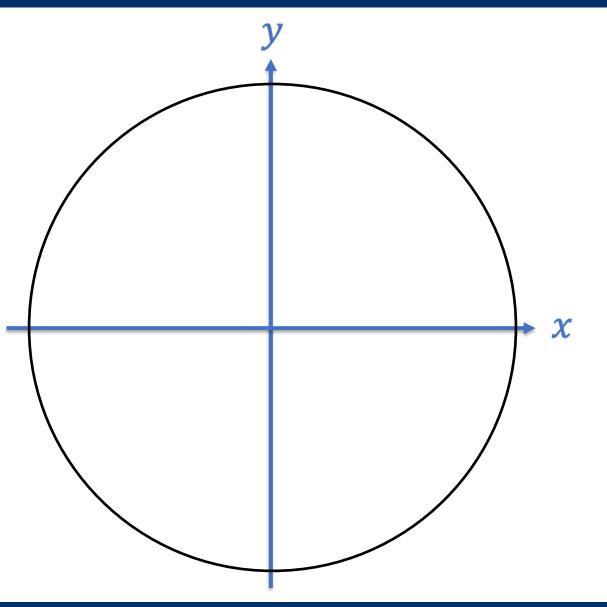
PRACTICE

The point Q = (c, d) lies on the unit circle, and makes a 45° angle with the *x* axis. Solve for *c* and *d*.

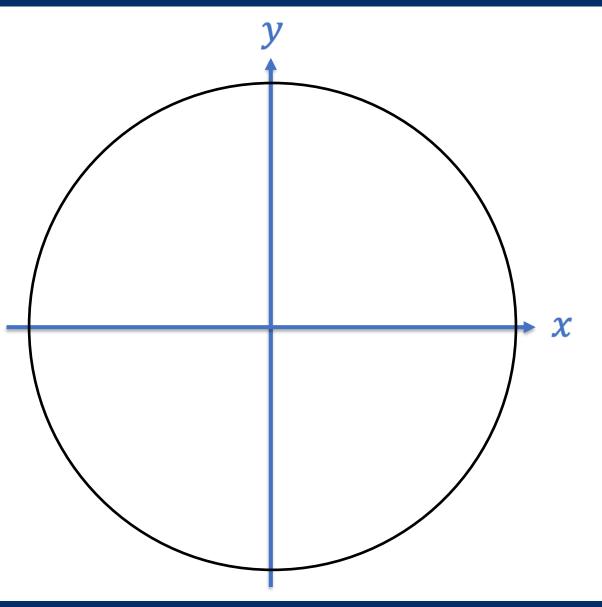


PRACTICE

The point R = (g, h) lies on the unit circle, and makes a 45° angle with the y axis. Solve for g and h.



QUESTIONS?



Useful trigonometric identities

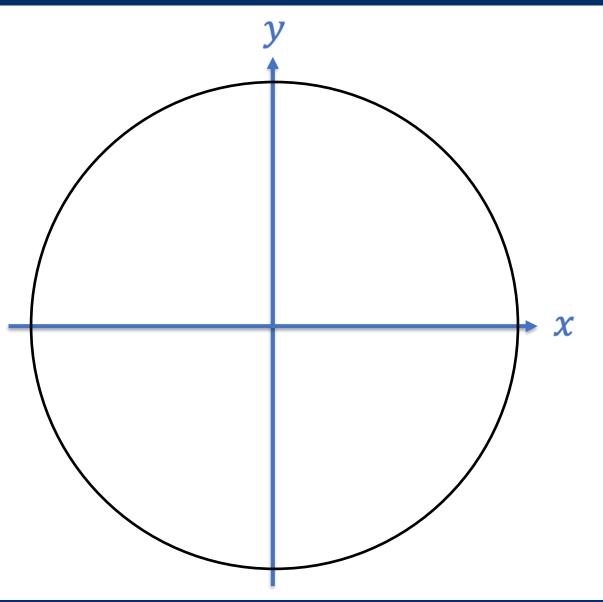
© 2020 The Coding School

USEFUL TRIG IDENTITIES

You are told that
$$\cos\left(\frac{3\pi}{8}\right) = \frac{1}{2}\sqrt{2-\sqrt{2}}$$
.
What is $\sin\left(\frac{3\pi}{8}\right)$?

Pythagorean identity:

 $\cos(\boldsymbol{\theta})^2 + \sin(\boldsymbol{\theta})^2 = \mathbf{1}$



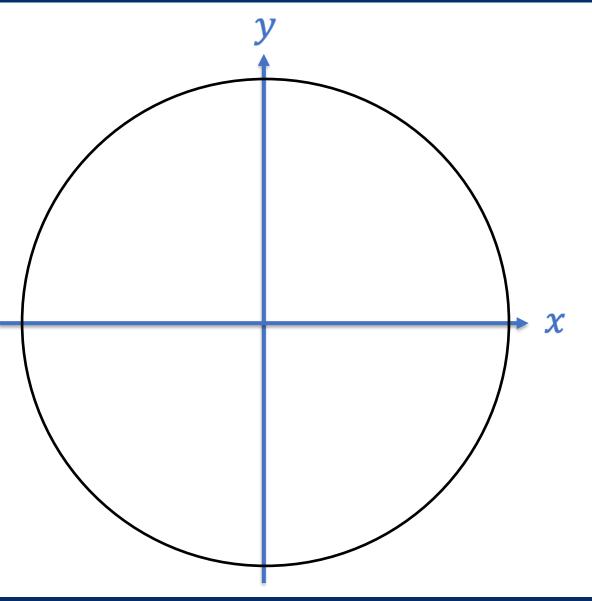
USEFUL TRIG IDENTITIES

Find
$$\cos\left(-\frac{\pi}{4}\right)$$
 and $\sin\left(-\frac{\pi}{4}\right)$.

Negative angles:

$$cos(-\theta) = cos(\theta)$$

 $sin(-\theta) = -sin(\theta)$

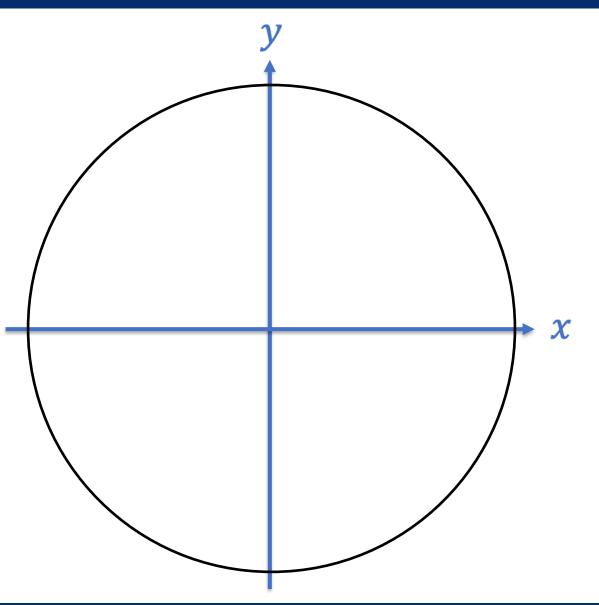


USEFUL TRIG IDENTITIES

Recall that
$$\cos\left(\frac{3\pi}{8}\right) = \frac{1}{2}\sqrt{2-\sqrt{2}}$$
.
Find $\sin\left(\frac{7\pi}{8}\right)$.

$\frac{\pi}{2}$ shift:

$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$$
$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta)$$



The <Coding School/>

Review

Pythagorean identity:

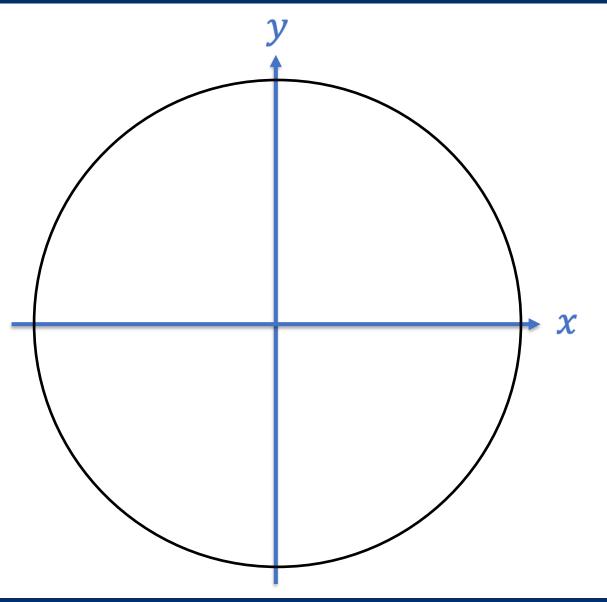
$$\cos(\boldsymbol{\theta})^2 + \sin(\boldsymbol{\theta})^2 = \mathbf{1}$$

Negative angles:

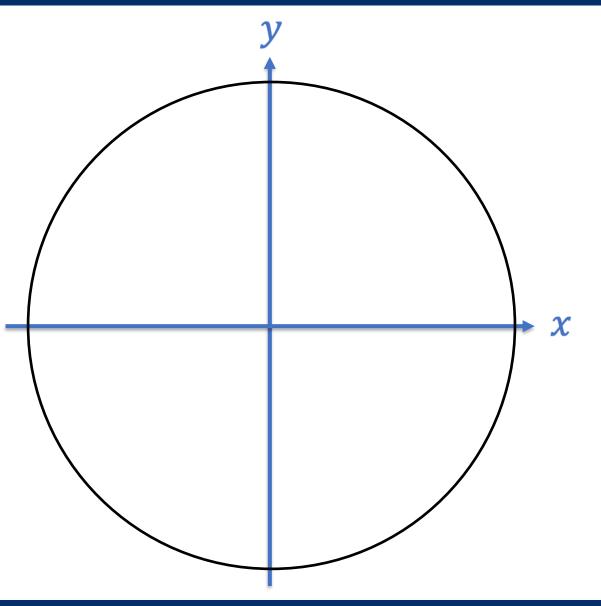
$$cos(-\boldsymbol{\theta}) = cos(\boldsymbol{\theta})$$
$$sin(-\boldsymbol{\theta}) = -sin(\boldsymbol{\theta})$$

$$\frac{\pi}{2}$$
 shift:

$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$$
$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta)$$



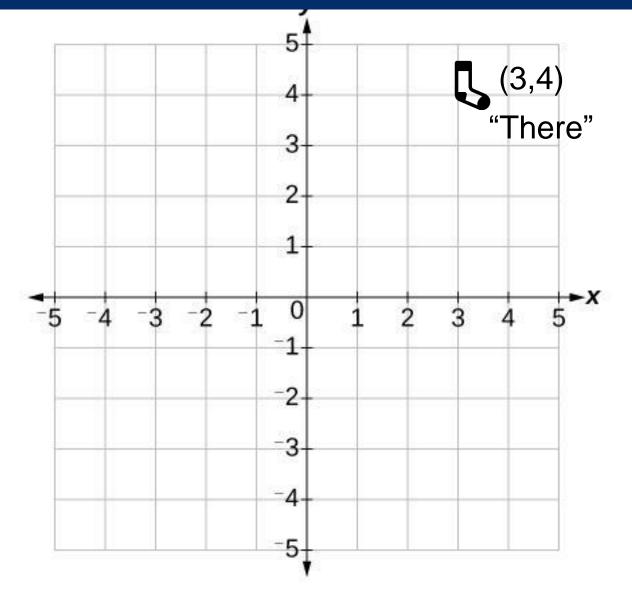
QUESTIONS?



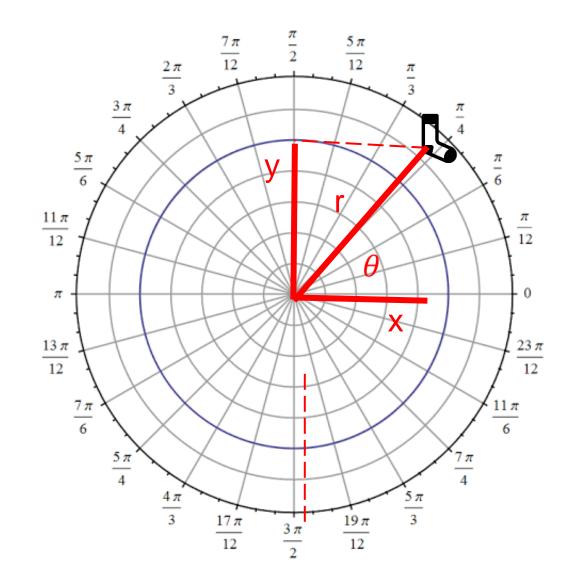
Coordinate systems

© 2020 The Coding School

COORDINATES



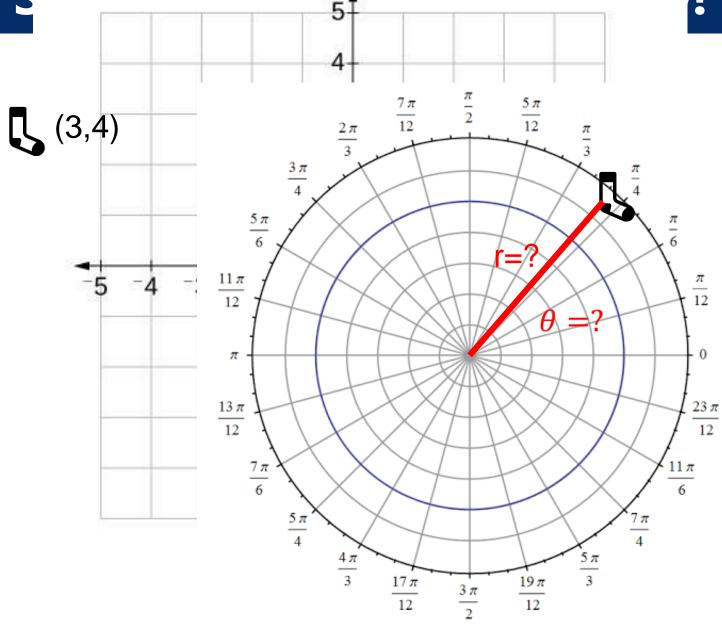
ENTER SINELAND-1A POLAR COORDINATES



 $x = r \cos \theta$ $y = r \sin \theta$

Coding School/>

LOCATE THE S



Coding School/>

VECTORS, QM STATES, COMPLEX NUMBERS!

Operations between vectors are easier with their components!

QM States are vectors in Hilbert Space.

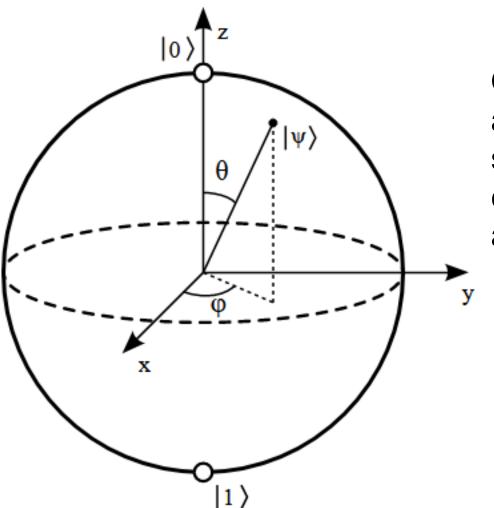
 $\pi/4$

Complex Numbers In Future!

Complex numbers have a super useful polar form which makes everything intuitive and easy!

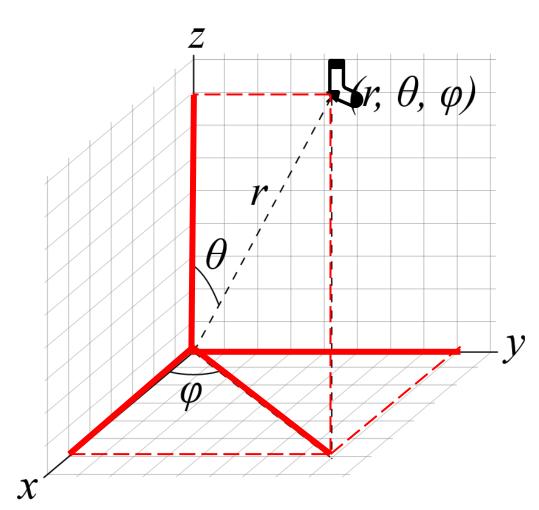
QUESTIONS

THE BLOCH SPHERE!



Quantum states in quantum computing are often represented on a Bloch spheres and operations in quantum computing amounts to moving the state around.

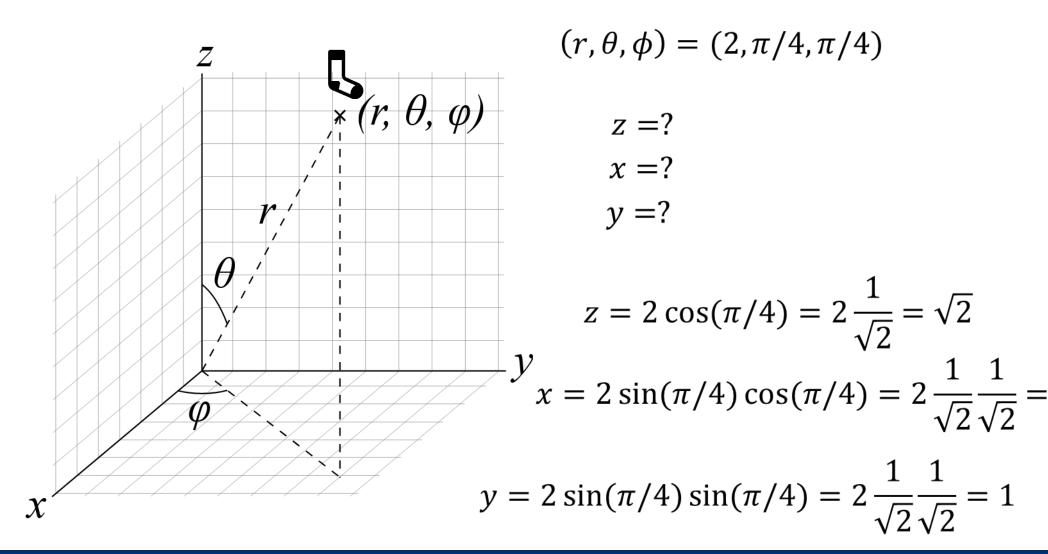
ENTER SINELAND-1B SPHERICAL COORDINATES



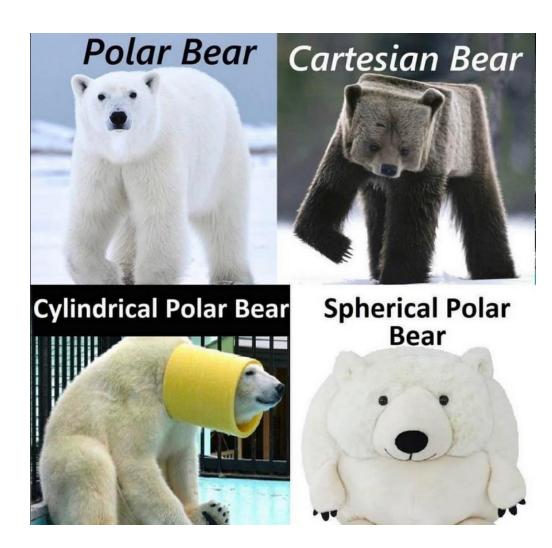
Watch out! Mathematicians use different convention than Physicists and switch θ and φ

- z = ? $z = r \cos \theta$
- x = ? $x = r \sin \theta \cos \varphi$
- y = ? $y = r \sin \theta \sin \varphi$

TELL YOUR CARTESIAN FRIEND TO FIND SOCK!



QUESTIONS?



Waves

© 2020 The Coding School

ENTER SINELAND 2: WAVES

Quantum Mechanics: Wave Matter Duality! de Broglie:

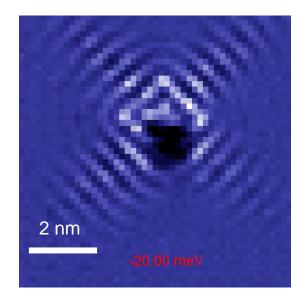
A particle moving with momentum p has a wavelength!

 $\lambda = \frac{h}{p} = \frac{h}{mv}$ Planck's constant $h = 6.626 \times 10^{-34} m^2 kg/s$

Q: Why do moving objects around us not appear wavy?

For instance, let us take golf ball: ~ 46g moving at 1 m/s $\lambda =?$ $\lambda \approx 10^{-32}m!$

How about an electron ($m \approx 10^{-30}$) moving at 10⁶ m/s? $\lambda \approx 10^{-10}$ m ~ size of an atom!



ENTER SINELAND 2: WAVES

 $sin(2\pi + x) = sin(x)$, Trigonometrical functions are periodic

$$\psi(x) = A \sin(kx + \phi)$$

A: Amplitude
k: Wave-vector
 ϕ : Phase

Let us explore this sineland in Geogebra!

QUESTIONS?

