Vectors and Matrices Cheat Sheet

Vectors represent a quantity that has both magnitude and direction.
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y Two vectors can be added together. Any vector can be multiplied by a scalar. y
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A vector of magnitude 1 is called a unit vector. A vector can be normalized to obtain a unit vector in the same direction.
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A matrix is a rectangular array of numbers organized into rows and columns. Vectors are special cases of matrices.
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Two matrices can be added together. Matrices can be multiplied by scalars, and by other matrices.
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The transpose is an operation that flips the shape of a matrix.The conjugate transpose additionally replaces each entry with its conjugate.
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The inner product is an important operation on two vectors. It can be used to find the angle between two vectors. 5t
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The identity matrix has 1s along it’s diagonals and Os elsewhere. Matrix multiplication by the identity is analogous to scalar multiplication by 1. We define the inverse of a matrix
using the identity matrix.
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Why is all this important!? Well it turns out that vectors and matrices are the language we use to talk about quantum computing. Quantum states are represented by vectors,
quantum gates are represented by matrices and the application of a gate to a state is represented by matrix-vector multiplication.
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