Eigenvectors and Eigenvalues Cheat Sheet

Let’s start by defining 3 vectors of
length/dimension n: i, 7, and w:

If a vector space is completely contained in
another vector space, we call it a subspace

We can create a linear combination of {1, 7, w} by
multiplying them by scalars «, 8, and y and adding
them together:
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called the "trivial” solution)

linearly independent vectors in a set

If you can create all vectorsin a
vector space I/ using a linear
combination of {u, U, w}:

V is spanned by {1, v, w}

If {1, v, w}is linearly independent
and spans vector space V:
{u, v, w}a basis of IV
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Quantum superpositions are the same as linear

combinations of the qubit energy states / basis
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We can create another qubit basis with equal
superpositions of the energy states:
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Eigenvalues and eigenvectors are
sets of scalars (values) and vectors
characteristic to a particular
matrix and which satisfy:

An eigenvector 1 does NOT
change direction when
multiplied by its matrix /7
but it is scaled by a factor 1

Eigenvectors and eigenvalues are
defined relative to a particular
matrix

i.e. an eigenvector for one matrix

If multiple eigenvectors correspond
to a single eigenvalue, the
— Ju eigenvectors are linearly dependent
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Where His a matrix, A is a scalar, and
1 is a vector

up of eigenvectors of a matrix
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An eigenbasis is a basis that is made

may not be an eigenvector for a
different matrix

The |0) and |1) quantum states we have been
discussing all semester are eigenvectors of our
guantum system’s Hamiltonian matrix (!!!)
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The time-independent Schrodinger equation is
the same as the eigenvalue/eigenvector
equation:
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You can see there are more (actually
an infinite number of) eigenvalues
of higher energy, but we only care
about the subspace spanned by
{|10),]1)}, which we call the
computational subspace

Modified from Krantz et. al., Appl. Phys. Rev., 2019.

A Hilbert space is a type of vector space that has
special properties that make it easy to define
lengths and angles of its vectors (the inner product)
and to perform calculus

All finite-dimensional (n # oo) vector spaces that
have a meaningful inner product are Hilbert spaces

Infinite-dimensional vector spaces have an
additional constraint that they are “complete” —
meaning (informally) that there are no gaps in the
set of possible inner products
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If {x,Z} € V, then Vis NOT a Hilbert space

All vector spaces that can be mapped onto
R™ (including C™) are Hilbert spaces

You can always assume you are in a Hilbert space in
this course.
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{|0), |1)} are eigenvectors of g,
— are an orthonormal eigenbasis
of g,
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Their eigenvalues correspond to the
gubit energy levels

This is why we measure in the Z-basis
(also called the energy basis)
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